Calculando distâncias e direções utilizando Coordenadas Geográficas
+3
Alvega
Luiz Alberto
Amilckar
7 participantes
Página 1 de 1
Calculando distâncias e direções utilizando Coordenadas Geográficas
Calculando distâncias e direções utilizando Coordenadas Geográficas
CARLOS EDUARDO FALCONI
INTRODUÇÃO
Antes de iniciar este estudo, é preciso relembrar os conceitos de DLA (diferença de latitude) e DLO (diferença de longitude).
A primeira – DLA – é a diferença angular entre duas latitudes, podendo ser de no máximo 180 graus, pois é a diferença entre 90ºN e 90ºS.
A segunda – DLO – é a menor diferença angular entre duas longitudes, podendo ser, também, de no máximo 180 graus, pois é a diferença entre a longitude de um meridiano qualquer e seu anti-meridiano (oposto a ele em 180º).
Para se calcular a distância entre duas localidades apenas sabendo-se as coordenadas, precisaremos também lembrar como converter estes valores de DLA e DLO em distância.
Para se calcular a direção entre duas localidades será necessário relembrar conceitos de trigonometria, como veremos mais à frente.
TRANSFORMANDO UM VALOR DE DLA OU DLO EM DISTÂNCIA
Para transformar um valor angular em distância, basta relembrar suas equivalências.
Como se sabe, 1º = 60 NM, assim pode-se concluir que 60′ = 60 NM \ 1′ = 1 NM.
Ocorre que 1′ = 60″, assim pode-se concluir que 60″ = 1 NM, ou seja, 1″ = 1/60 NM.
Sabendo-se estas equivalências, fica fácil transformar qualquer valor de DLA ou DLO em distâncias. Observe o exemplo a seguir.
Vamos converter o valor 23º 30’ 36” em distância. Basta isolar cada valor e converter individualmente, somando os resultados.
Obviamente, este método vale para distâncias pequenas (menores do que 800 NM), pois o correto seria levar em conta a curvatura terrestre; no entanto, o método funciona muito bem, como veremos adiante.
CALCULANDO A DISTÂNCIA ENTRE DOIS PONTOS GEOGRÁFICOS
Pode ocorrer de, em determinado momento, o piloto ter as coordenadas entre dois pontos, mas não ter em mãos a carta ou algum equipamento para calcular a distância entre elas. Quando isto acontecer, basta utilizar o que já se conhece sobre coordenadas geográficas. Já foi visto que uma coordenada geográfica utiliza o sistema cartesiano para indicar localidades. Fazendo uma análise simples, qualquer coordenada pode ser representada em um sistema de eixos do tipo “x” e “y”.
Vamos pegar como exemplo as coordenadas geográficas das duas cabeceiras da pista de SBMT (Aeroporto Campo de Marte, São Paulo):
SBMT: PISTA 12 (23º 30’ 29,93” S/046º 38’ 32,90” W)
SBMT: PISTA 30 (23º 30’ 36,50” S/046º 37’ 53,01” W)
Vamos agora calcular o comprimento da pista, utilizando as duas coordenadas.
Basta uma pequena análise para se perceber que o comprimento da pista é definido por uma linha que liga os dois pontos e que esta linha nada mais é do que a hipotenusa de um triângulo retângulo definido pelas diferenças de latitude (DLA) e de longitude (DLO), que são os catetos entre estes pontos. Veja o esquema abaixo:
Vamos, então, calcular as DLA e DLO:
DLA = 23º 30’ 36,50” – 23º 30’ 29,93” = 6,57”
DLO = 046º 38’ 32,90” – 046º 37’ 53,01” = 39,89”
Sabendo o valor das DLA e DLO, basta transformá-las em distância, dividindo-as por 60:
DLA = 6,57” ÷ 60 = 0,1095 NM x 1.852 = 202,8 metros
DLO = 39,89” ÷ 60 = 0,6648 NM x 1.852 = 1.231,2 metros
Colocando-se os valores na fórmula:
COMPRIMENTO 2 = 202,8 2 + 1.231,2 2 = raiz (41.127,84 + 1.515.853,44)
COMPRIMENTO = 1.247,8 metros
Para provar que o cálculo está correto, vamos utilizar a ferramenta régua do Google Earth:
CALCULANDO A DIREÇÃO ENTRE DOIS PONTOS GEOGRÁFICOS
Até o momento, utilizou-se apenas uma calculadora simples para os cálculos, necessitando-se somente do valor de uma raiz quadrada.
Veremos agora que, apesar de um pouco complexo, há a possibilidade de se efetuar o cálculo da direção entre dois pontos geográficos. Para isso, será necessário rever conceitos de básicos de trigonometria e da teoria dos triângulos.
Como o triângulo que vamos estudar é um triângulo retângulo, teremos o seguinte desenho:
Pela teoria dos triângulos, a soma interna de todos os ângulos é sempre igual a 180º. Assim,
Basta, portanto, achar α para achar β ou vice-versa:
Para calcular o valor dos ângulos, é necessário lembrar-se dos conceitos de trigonometria.
O valor de um ângulo em um triângulo retângulo pode ser assim calculado:
Sabendo-se disso, tomando-se por base o ângulo α , podemos deduzir que:
Uma vez que os valores de DLA e DLO são mais facilmente encontrados, vamos, então, aplicar estes valores utilizando a fórmula da tangente de α :
Sabendo-se o valor da tangente, basta calcular a tangente inversa, ou seja, o arco-tangente deste ângulo. O resultado desta operação, que deverá ser feita utilizando-se uma calculadora com esta função ou o Excel – como veremos a seguir – pode ser assim representado:
Esta operação dá o valor em radianos, os quais devem ser convertidos em graus.
Uma calculadora mais avançada faz este cálculo rapidamente, bastando clicar na função “inverso” e depois na função “graus/radianos”.
No Excel basta colocar a seguinte fórmula:
Aplicando esta fórmula no Excel, temos:
α = graus(atan(0,1647)), o resultado será 9,352651º, ou seja, arredondando-se para números inteiros, será 9º.
Se α = 9º, β = 90º – α \ β = 90º – 9º = 81º, ou seja:
É importante ressaltar que estes valores são da parte interna do triângulo, que ficará assim:
Portanto, os valores dos Rumos Verdadeiros (RV) das pistas 12 e 30 serão, respectivamente:
Como a declinação magnética do SBMT é 21ºW, os Rumos Magnéticos serão, respectivamente:
Isto prova que os cálculos estão corretos, pois senão as pistas não seriam 12 e 30.
Fonte: pilotopolicial.com.br
CARLOS EDUARDO FALCONI
INTRODUÇÃO
Antes de iniciar este estudo, é preciso relembrar os conceitos de DLA (diferença de latitude) e DLO (diferença de longitude).
A primeira – DLA – é a diferença angular entre duas latitudes, podendo ser de no máximo 180 graus, pois é a diferença entre 90ºN e 90ºS.
A segunda – DLO – é a menor diferença angular entre duas longitudes, podendo ser, também, de no máximo 180 graus, pois é a diferença entre a longitude de um meridiano qualquer e seu anti-meridiano (oposto a ele em 180º).
Para se calcular a distância entre duas localidades apenas sabendo-se as coordenadas, precisaremos também lembrar como converter estes valores de DLA e DLO em distância.
Para se calcular a direção entre duas localidades será necessário relembrar conceitos de trigonometria, como veremos mais à frente.
TRANSFORMANDO UM VALOR DE DLA OU DLO EM DISTÂNCIA
Para transformar um valor angular em distância, basta relembrar suas equivalências.
Como se sabe, 1º = 60 NM, assim pode-se concluir que 60′ = 60 NM \ 1′ = 1 NM.
Ocorre que 1′ = 60″, assim pode-se concluir que 60″ = 1 NM, ou seja, 1″ = 1/60 NM.
Sabendo-se estas equivalências, fica fácil transformar qualquer valor de DLA ou DLO em distâncias. Observe o exemplo a seguir.
Vamos converter o valor 23º 30’ 36” em distância. Basta isolar cada valor e converter individualmente, somando os resultados.
23º X 60 = 1.380
30’ X 1 = 30
36” ÷ 60 = 0,6
‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
1.380 + 30 + 0,6 = 1.410,6 NM x 1,852 = 2.612,4 Km
30’ X 1 = 30
36” ÷ 60 = 0,6
‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
1.380 + 30 + 0,6 = 1.410,6 NM x 1,852 = 2.612,4 Km
Obviamente, este método vale para distâncias pequenas (menores do que 800 NM), pois o correto seria levar em conta a curvatura terrestre; no entanto, o método funciona muito bem, como veremos adiante.
CALCULANDO A DISTÂNCIA ENTRE DOIS PONTOS GEOGRÁFICOS
Pode ocorrer de, em determinado momento, o piloto ter as coordenadas entre dois pontos, mas não ter em mãos a carta ou algum equipamento para calcular a distância entre elas. Quando isto acontecer, basta utilizar o que já se conhece sobre coordenadas geográficas. Já foi visto que uma coordenada geográfica utiliza o sistema cartesiano para indicar localidades. Fazendo uma análise simples, qualquer coordenada pode ser representada em um sistema de eixos do tipo “x” e “y”.
Vamos pegar como exemplo as coordenadas geográficas das duas cabeceiras da pista de SBMT (Aeroporto Campo de Marte, São Paulo):
SBMT: PISTA 12 (23º 30’ 29,93” S/046º 38’ 32,90” W)
SBMT: PISTA 30 (23º 30’ 36,50” S/046º 37’ 53,01” W)
Vamos agora calcular o comprimento da pista, utilizando as duas coordenadas.
Basta uma pequena análise para se perceber que o comprimento da pista é definido por uma linha que liga os dois pontos e que esta linha nada mais é do que a hipotenusa de um triângulo retângulo definido pelas diferenças de latitude (DLA) e de longitude (DLO), que são os catetos entre estes pontos. Veja o esquema abaixo:
Pelo Teorema de Pitágoras, o quadrado da hipotenusa é igual à soma dos quadrados dos catetos. Podemos considerar que um dos catetos é a DLA e o outro a DLO, sendo a hipotenusa o comprimento da pista (ou a distância entre os dois pontos). Assim, valerá sempre a fórmula:
COMPRIMENTO 2 = DLA 2 + DLO 2
Vamos, então, calcular as DLA e DLO:
DLA = 23º 30’ 36,50” – 23º 30’ 29,93” = 6,57”
DLO = 046º 38’ 32,90” – 046º 37’ 53,01” = 39,89”
Sabendo o valor das DLA e DLO, basta transformá-las em distância, dividindo-as por 60:
DLA = 6,57” ÷ 60 = 0,1095 NM x 1.852 = 202,8 metros
DLO = 39,89” ÷ 60 = 0,6648 NM x 1.852 = 1.231,2 metros
Colocando-se os valores na fórmula:
COMPRIMENTO 2 = 202,8 2 + 1.231,2 2 = raiz (41.127,84 + 1.515.853,44)
COMPRIMENTO = 1.247,8 metros
Para provar que o cálculo está correto, vamos utilizar a ferramenta régua do Google Earth:
CALCULANDO A DIREÇÃO ENTRE DOIS PONTOS GEOGRÁFICOS
Até o momento, utilizou-se apenas uma calculadora simples para os cálculos, necessitando-se somente do valor de uma raiz quadrada.
Veremos agora que, apesar de um pouco complexo, há a possibilidade de se efetuar o cálculo da direção entre dois pontos geográficos. Para isso, será necessário rever conceitos de básicos de trigonometria e da teoria dos triângulos.
Como o triângulo que vamos estudar é um triângulo retângulo, teremos o seguinte desenho:
Pela teoria dos triângulos, a soma interna de todos os ângulos é sempre igual a 180º. Assim,
α + β + 90º = 180º
Basta, portanto, achar α para achar β ou vice-versa:
α = 90º – β
β = 90º – α
β = 90º – α
Para calcular o valor dos ângulos, é necessário lembrar-se dos conceitos de trigonometria.
O valor de um ângulo em um triângulo retângulo pode ser assim calculado:
- Tangente de um ângulo é igual ao cateto oposto sobre o adjacente
- Seno de um ângulo é igual ao cateto oposto sobre a hipotenusa
- Cosseno de um ângulo é igual ao cateto adjacente sobre a hipotenusa
Sabendo-se disso, tomando-se por base o ângulo α , podemos deduzir que:
tan α = DLA ÷ DLO
sen α = DLA ÷ distância
cos α = DLO ÷ distância
sen α = DLA ÷ distância
cos α = DLO ÷ distância
Uma vez que os valores de DLA e DLO são mais facilmente encontrados, vamos, então, aplicar estes valores utilizando a fórmula da tangente de α :
tang α = 202,8 ÷ 1.231,3 = 0,1647
Sabendo-se o valor da tangente, basta calcular a tangente inversa, ou seja, o arco-tangente deste ângulo. O resultado desta operação, que deverá ser feita utilizando-se uma calculadora com esta função ou o Excel – como veremos a seguir – pode ser assim representado:
arctan α = tan-1 α
Esta operação dá o valor em radianos, os quais devem ser convertidos em graus.
Uma calculadora mais avançada faz este cálculo rapidamente, bastando clicar na função “inverso” e depois na função “graus/radianos”.
No Excel basta colocar a seguinte fórmula:
=graus(atan(tanα))
=graus(atan(DLA/DLO))
=graus(atan(DLA/DLO))
Aplicando esta fórmula no Excel, temos:
α = graus(atan(0,1647)), o resultado será 9,352651º, ou seja, arredondando-se para números inteiros, será 9º.
Se α = 9º, β = 90º – α \ β = 90º – 9º = 81º, ou seja:
α = 9º
β = 81º
β = 81º
É importante ressaltar que estes valores são da parte interna do triângulo, que ficará assim:
Portanto, os valores dos Rumos Verdadeiros (RV) das pistas 12 e 30 serão, respectivamente:
RV PISTA 12 = 180º – 81º = 99º
RV PISTA 30 = 270º + 9º = 279º
RV PISTA 30 = 270º + 9º = 279º
Como a declinação magnética do SBMT é 21ºW, os Rumos Magnéticos serão, respectivamente:
RM PISTA 12 = 99º + 21º = 120º
RM PISTA 30 = 279º + 21º = 300º
RM PISTA 30 = 279º + 21º = 300º
Isto prova que os cálculos estão corretos, pois senão as pistas não seriam 12 e 30.
Fonte: pilotopolicial.com.br
Amilckar- Colaborador - Notícias de aviação
-
Inscrito em : 12/10/2009
Mensagens : 11036
Reputação : 512
Idade : 59
Simulador preferido : P3D V3
Emprego/lazer : Militar aposentado
Nacionalidade :
Luiz Alberto- Capitão
-
Inscrito em : 16/03/2011
Mensagens : 123
Reputação : 4
Idade : 81
Simulador preferido : FS9
Emprego/lazer : Engenheiro
Nacionalidade :
Re: Calculando distâncias e direções utilizando Coordenadas Geográficas
Concordo com o Luiz Alberto.
_________________
Artur Santos
Voo Virtual
Re: Calculando distâncias e direções utilizando Coordenadas Geográficas
Muito bom mesmo !
Parabéns ...
Parabéns ...
_________________
W10 64 bits - Placa Mãe: ASUS P8Z77-V / Processador: Intel I7 3770K 4.2 Ghz - Memória: 32 GBs 4X8 HyperX 1866 MHz
Placa de Video: NVidia RTX 2060 6GBs DDR6 / Hard Disk: Seagate 1Tb + SSD 500 Gbs + SSD 1Tb/ Fonte: Thermaltake TR2 700P 700W
Meus cenários.
Meu canal no Youtube.
Re: Calculando distâncias e direções utilizando Coordenadas Geográficas
Muito bom, Amilckar
Já agora uma pequena introdução à navegação Ortodromica e Loxodromica para completar.
Já agora uma pequena introdução à navegação Ortodromica e Loxodromica para completar.
_________________
João Sant'Ana
Jacsantana- Brigadeiro
-
Inscrito em : 12/05/2008
Mensagens : 2735
Reputação : 143
Idade : 83
Simulador preferido : FS2004
Emprego/lazer : Capitão da Marinha Mercante, Comandante dos Bombeiros Voluntários / FS - Desporto apropriado à idade :-)
Nacionalidade :
Re: Calculando distâncias e direções utilizando Coordenadas Geográficas
Jacsantana escreveu:Muito bom, Amilckar
Já agora uma pequena introdução à navegação Ortodromica e Loxodromica para completar.
Credo Nem sabia que existiam essas palavras...hehehehe
Amilckar
el_lopes- Major-Brigadeiro
-
Inscrito em : 28/04/2010
Mensagens : 3336
Reputação : 139
Idade : 60
Simulador preferido : FS2004
Emprego/lazer : Industria farmaceutica/Cinema,praia,viajar e aviões!
Nacionalidade :
Re: Calculando distâncias e direções utilizando Coordenadas Geográficas
Pois é.. São as famosas derrotas...el_lopes escreveu:Jacsantana escreveu:Muito bom, Amilckar
Já agora uma pequena introdução à navegação Ortodromica e Loxodromica para completar.
Credo Nem sabia que existiam essas palavras...hehehehe
Amilckar
Na loxodromia a rota faz um ângulo constante com todos os meridianos e tende para os pólos. Boa para pequens distâncias.
A ortodromia é o arco de círculo máximo que passa por 2 pontos origem e destino, por exemplo) e não corta os meridianos com os mesmos ângulos.
É nessa hora que a gente aprende que a menor distância entre 2 pontos NÃO É UMA RETA (dependendo da distância claro)
Cmte. JacSantana, me corrija aí se falei bobagem, afinal minha área é mais lá embaixo, literalmente, só mandando lenha...
IICE!
Icem@n- Major
-
Inscrito em : 03/03/2011
Mensagens : 439
Reputação : 51
Idade : 55
Emprego/lazer : Pilotar
Nacionalidade :
Página 1 de 1
Permissões neste sub-fórum
Não podes responder a tópicos